CARBOHYDRATES

                                            CARBOHYDRATES

A carbohydrate is a biological molecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water); in other words, with the empirical formula Cm(H2O)n(where m could be different from n).[1] Some exceptions exist; for example, deoxyribose, a sugar component ofDNA,[2] has the empirical formula C5H10O4.[3] Carbohydrates are technically hydrates of carbon;[4] structurally it is more accurate to view them as polyhydroxy aldehydes and ketones.[5]
The term is most common in biochemistry, where it is a synonym of saccharide, a group that includes sugars,starch, and cellulose. The saccharides are divided into four chemical groups: monosaccharides, disaccharides,oligosaccharides, and polysaccharides. In general, the monosaccharides and disaccharides, which are smaller (lower molecular weight) carbohydrates, are commonly referred to as sugars.[6] The word saccharide comes from the Greek word σάκχαρον (sákkharon), meaning "sugar." While the scientific nomenclature of carbohydrates is complex, the names of the monosaccharides and disaccharides very often end in the suffix -ose. For example, grape sugar is the monosaccharide glucose, cane sugar is the disaccharide sucrose, and milk sugar is the disaccharide lactose (see illustration).
Carbohydrates perform numerous roles in living organisms. Polysaccharides serve for the storage of energy (e.g. starch and glycogen) and as structural components (e.g. cellulose in plants and chitin in arthropods). The 5-carbon monosaccharide ribose is an important component of coenzymes (e.g. ATP, FAD andNAD) and the backbone of the genetic molecule known as RNA. The related deoxyribose is a component of DNA. Saccharides and their derivatives include many other important biomolecules that play key roles in the immune system, fertilization, preventing pathogenesis, blood clotting, and development.[7]
In food science and in many informal contexts, the term carbohydrate often means any food that is particularly rich in the complex carbohydrate starch (such as cereals, bread and pasta) or simple carbohydrates, such as sugar (found in candy, jams, and desserts).
Often in lists of nutritional information, such as the USDA National Nutrient Database, the term "carbohydrate" (or "carbohydrate by difference") is used for everything other than water, protein, fat, ash, and ethanol.[8] This will include chemical compounds such as acetic or lactic acid, which are not normally considered carbohydrates. It also includes "dietary fiber" which is a carbohydrate but which does not contribute much in the way of food energy (calories), even though it is often included in the calculation of total food energy just as though it were a sugar.[9]



STRUCTURE:
Formerly the name "carbohydrate" was used in chemistry for any compound with the formula Cm (H2O) n. Following this definition, some chemists consideredformaldehyde (CH2O) to be the simplest carbohydrate,[10] while others claimed that title for glycolaldehyde.[11] Today, the term is generally understood in the biochemistry sense, which excludes compounds with only one or two carbons and includes many biological carbohydrates which deviate from this formula. For example, while the above representative formulas would seem to capture the commonly known carbohydrates, ubiquitous and abundant carbohydrates often deviate from this. For example, carbohydrates often display chemical groups such as: N-acetyl (e.g. chitin), sulphate (e.g. glycosaminoglycans), carboxylic acid (e.g. sialic acid) and deoxy modifications (e.g. fucose and sialic acid).
Natural saccharides are generally built of simple carbohydrates called monosaccharides with general formula (CH2O)n where n is three or more. A typical monosaccharide has the structure H–(CHOH)x(C=O)–(CHOH)y–H, that is, an aldehyde or ketone with many hydroxyl groups added, usually one on each carbon atomthat is not part of the aldehyde or ketone functional group. Examples of monosaccharides are glucose, fructose, and glyceraldehydes. However, some biological substances commonly called "monosaccharides" do not conform to this formula (e.g. uronic acids and deoxy-sugars such as fucose) and there are many chemicals that do conform to this formula but are not considered to be monosaccharides (e.g. formaldehyde CH2O and inositol (CH2O)6).[12]
The open-chain form of a monosaccharide often coexists with a closed ring form where the aldehyde/ketone carbonyl group carbon (C=O) and hydroxyl group (–OH) react forming a hemiacetal with a new C–O–C bridge.
Monosaccharides can be linked together into what are called polysaccharides (or oligosaccharides) in a large variety of ways. Many carbohydrates contain one or more modified monosaccharide units that have had one or more groups replaced or removed. For example, deoxyribose, a component of DNA, is a modified version of ribose; chitin is composed of repeating units of N-acetyl glucosamine, a nitrogen-containing form of glucose.

DIVISION
Carbohydrates are polyhydroxy aldehydes, ketones, alcohols, acids, their simple derivatives and their polymers having linkages of the acetal type. They may be classified according to their degree of polymerization and may be divided initially into three principal groups, namely sugars, oligosaccharides and polysaccharides[13]
The major dietary carbohydrates
Class (DP*)
Subgroup
Components
Sugars (1–2)
Malto-oligosaccharides
Other oligosaccharides
Raffinose, stachyose, fructo-oligosaccharides
Amylose, amylopectin, modified starches
Non-starch polysaccharides
DP * = Degree of polymerization

MONOSACCHARIDES

Monosaccharides are the simplest carbohydrates in that they cannot be hydrolyzed to smaller carbohydrates. They are aldehydes or ketones with two or more hydroxyl groups. The general chemical formula of an unmodified monosaccharide is (C•H2O) n, literally a "carbon hydrate." Monosaccharides are important fuel molecules as well as building blocks for nucleic acids. The smallest monosaccharides, for which n=3, are dihydroxyacetone and D- and L-glyceraldehydes.

Classification of monosaccharide

The α and β anomers of glucose. Note the position of the hydroxyl group (red or green) on the anomeric carbon relative to the CH2OH group bound to carbon 5: they either have identical absolute configurations (R,R or S,S) (α), or opposite absolute configurations (R,S or S,R) (β).[14]
Monosaccharides are classified according to three different characteristics: the placement of its carbonylgroup, the number of carbon atoms it contains, and its chiral handedness. If the carbonyl group is analdehyde, the monosaccharide is an aldose; if the carbonyl group is a ketone, the monosaccharide is aketose. Monosaccharides with three carbon atoms are called trioses, those with four are called tetroses, five are called pentoses, six are hexoses, and so on.[15] These two systems of classification are often combined. For example, glucose is an aldohexose (a six-carbon aldehyde), ribose is an aldopentose (a five-carbon aldehyde), and fructose is a ketohexose (a six-carbon ketone).
Each carbon atom bearing a hydroxyl group (-OH), with the exception of the first and last carbons, areasymmetric, making them stereo centers with two possible configurations each (R or S). Because of this asymmetry, a number of isomers may exist for any given monosaccharide formula. Using Le Bel-van't Hoff rule, the aldohexose D-glucose, for example, has the formula (C·H2O) 6, of which four of its six carbons atoms are stereogenic, making D-glucose one of 24=16 possible stereoisomers. In the case ofglyceraldehydes, an aldotriose, there is one pair of possible stereoisomers, which are enantiomers andepimers. 1, 3-dihydroxyacetone, the ketose corresponding to the aldose glyceraldehydes, is a symmetric molecule with no stereo centers. The assignment of D or L is made according to the orientation of the asymmetric carbon furthest from the carbonyl group: in a standard Fischer projection if the hydroxyl group is on the right the molecule is a D sugar, otherwise it is an L sugar. The "D-" and "L-" prefixes should not be confused with "d-" or "l-", which indicate the direction that the sugar rotates plane polarized light. This usage of "d-" and "l-" is no longer followed in carbohydrate chemistry.[16]
Ring-straight chain isomerism[edit]

Glucose can exist in both a straight-chain and ring form.
The aldehyde or ketone group of a straight-chain monosaccharide will react reversibly with a hydroxyl group on a different carbon atom to form a hemiacetal or hemiketal, forming a heterocyclic ring with an oxygen bridge between two carbon atoms. Rings with five and six atoms are called furanose and pyranose forms, respectively, and exist in equilibrium with the straight-chain form.[17]
During the conversion from straight-chain form to the cyclic form, the carbon atom containing the carbonyl oxygen, called theanomeric carbon, becomes a stereogenic center with two possible configurations: The oxygen atom may take a position either above or below the plane of the ring. The resulting possible pair of stereoisomers is called anomers. In the α anomer, the -OH substituent on the anomeric carbon rests on the opposite side (trans) of the ring from the CH2OH side branch. The alternative form, in which the CH2OH substituent and the anomeric hydroxyl are on the same side (cis) of the plane of the ring, is called theβ anomer.
Use in living organisms[edit]
Monosaccharides are the major source of fuel for metabolism, being used both as an energy source (glucose being the most important in nature) and inbiosynthesis. When monosaccharides are not immediately needed by many cells they are often converted to more space-efficient forms, often polysaccharides. In many animals, including humans, this storage form is glycogen, especially in liver and muscle cells. In plants, starch is used for the same purpose. The most abundant carbohydrate, cellulose, is a structural component of the cell wall of plants and many forms of algae. Ribose is a component of RNA. Deoxyribose is a component of DNA. Lyxose is a component of lyxoflavin found in the human heart.[18] Ribulose and xylulose occur in the pentose phosphate pathway. Galactose, a component of milk sugar lactose, is found in galactolipids in plant cell membranes and in glycoproteins in many tissues. Mannose occurs in human metabolism, especially in the glycosylation of certain proteins. Fructose, or fruit sugar, is found in many plants and in humans, it is metabolized in the liver, absorbed directly into the intestines during digestion, and found in semen. Trehalose, a major sugar of insects, is rapidly hydrolyzed into two glucose molecules to support continuous flight.

STRUCTURE
Monosaccharides (from Greek monos: single, sacchar: sugar), also called simple sugars, are the most basic units of carbohydrates. They are fundamental units of carbohydrates and cannot be further hydrolised to simpler compounds. The general formula is C
n
H
2n
O
n
. They are the simplest form of sugar and are usuallycolorless, water-soluble, and crystalline solids. Some monosaccharides have a sweet taste. Examples of monosaccharides include glucose (dextrose), fructose(levulose) and galactose. Monosaccharides are the building blocks of disaccharides (such as sucrose and lactose) and polysaccharides (such as cellulose andstarch). Further, each carbon atom that supports a hydroxyl group (so, all of the carbons except for the primary and terminal carbon) is chiral, giving rise to a number of isomeric forms, all with the same chemical formula. For instance, galactose and glucose are both aldohexoses, but have different physical structures and chemical properties.

Linear-chain monosaccharides
Simple monosaccharides have a linear and unbranched carbon skeleton with one carbonyl (C=O) functional group, and one hydroxyl (OH) group on each of the remaining carbon atoms. Therefore, the molecular structure of a simple monosaccharide can be written as H(CHOH)n(C=O)(CHOH)mH, where n + 1 + m = x; so that its elemental formula is CxH2xOx.
By convention, the carbon atoms are numbered from 1 to x along the backbone, starting from the end that is closest to the C=O group.
If the carbonyl is at position 1 (that is, n or m is zero), the molecule begins with a formyl group H(C=O)− and is technically an aldehyde. In that case, the compound is termed an aldose. Otherwise, the molecule has a keto group, a carbonyl −(C=O)− between two carbons; then it is formally a ketone, and is termed a ketose. Ketoses of biological interest usually have the carbonyl at position 2.
The various classifications above can be combined, resulting in names such as "aldohexose" and "ketotriose".
A more general nomenclature for open-chain monosaccharides combines a Greek prefix to indicate the number of carbons (tri-, tetr-, pent-, hex-, etc.) with the suffixes "-ose" for aldoses and "-ulose" for ketoses. In the latter case, if the carbonyl is not at position 2, its position is then indicated by a numeric infix. So, for example, H(C=O)(CHOH)4H is pentose, H(CHOH)(C=O)(CHOH)3H is pentulose, and H(CHOH)2(C=O)(CHOH)2H is pent-3-ulose.
  
Open-chain stereoisomers
Two monosaccharides with equivalent molecular graphs (same chain length and same carbonyl position) may still be distinct stereoisomers, whose molecules differ in the three-dimensional arrangement of the bonds of certain atoms. This happens only if the molecule contains a stereogenic center, specifically a carbon atom that ischiral (connected to four distinct molecular sub-structures). Those four bonds can have any of two configurations in space distinguished by their handedness. In a simple open-chain monosaccharide, every carbon is chiral except the first and the last atoms of the chain, and (in ketoses) the carbon with the keto group.
For example, the triketose H(CHOH)(C=O)(CHOH)H (glycerone, dihydroxyacetone) has no stereogenic center, and therefore exists as a single stereoisomer. The other triose, the aldose H(C=O)(CHOH)2H (glyceraldehyde), has one chiral carbon — the central one, number 2 — which is bonded to groups −H, −OH, −C(OH)H2, and −(C=O)H. Therefore, it exists as two stereoisomers whose molecules are mirror images of each other (like a left and a right glove). Monosaccharides with four or more carbons may contain multiple chiral carbons, so they typically have more than two stereoisomers. The number of distinct stereoisomers with the same diagram is bounded by 2c, where c is the total number of chiral carbons.
The Fischer projection is a systematic way of drawing the skeletal formula of an acyclic monosaccharide so that the handedness of each chiral carbon is well specified. Each stereoisomer of a simple open-chain monosaccharide can be identified by the positions (right or left) in the Fischer diagram of the chiral hydroxyls (the hydroxyls attached to the chiral carbons).
Most stereoisomers are themselves chiral (distinct from their mirror images). In the Fischer projection, two mirror-image isomers differ by having the positions of all chiral hydroxyls reversed right-to-left. Mirror-image isomers are chemically identical in non-chiral environments, but usually have very different biochemical properties and occurrences in nature.
While most stereoisomers can be arranged in pairs of mirror-image forms, there are some non-chiral stereoisomers that are identical to their mirror images, in spite of having chiral centers. This happens whenever the molecular graph is symmetrical, as in the 3-ketopentoses H(CHOH)2(CO)(CHOH)2H, and the two halves are mirror images of each other. In that case, mirroring is equivalent to a half-turn rotation. For this reason, there are only three distinct 3-ketopentose stereoisomers, even though the molecule has two chiral carbons.
Distinct stereoisomers that are not mirror-images of each other usually have different chemical properties, even in non-chiral environments. Therefore, each mirror pair and each non-chiral stereoisomer may be given a specific monosaccharide name. For example, there are 16 distinct aldohexose stereoisomers, but the name "glucose" means a specific pair of mirror-image aldohexoses. In the Fischer projection, one of the two glucose isomers has the hydroxyl at left on C3, and at right on C4 and C5; while the other isomer has the reversed pattern. These specific monosaccharide names have conventional three-letter abbreviations, like "Glu" for glucose and "Thr" for threose.
Generally, a monosaccharide with n asymmetrical carbons has 2n stereoisomers. The number of open chain stereoisomers for an aldose monosaccharide is larger by one than that of a ketose monosaccharide of the same length. Every ketose will have 2(n−3) stereoisomers where n > 2 is the number of carbons. Every aldose will have 2(n−2) stereoisomers where n > 2 is the number of carbons. These are also referred to as epimers which have the different arrangement of −OH and −H groups at the asymmetric or chiral carbon atoms (this does not apply to those carbons having the carbonyl functional group).

Chirality nomenclature
Like many chiral molecules, the two stereoisomers of glyceraldehyde will gradually rotate the polarization direction of linearly polarized light as it passes through it, even in solution. The two stereoisomers are identified with the prefixes D- and L-, according to the sense of rotation: D-glyceraldehyde is dextrorotatory (rotates the polarization axis clockwise), while L-glyceraldehyde is levorotatory (rotates it counterclockwise).

D- and L-glucose
The D- and L- prefixes are also used with other monosaccharides, to distinguish two particular stereoisomers that are mirror-images of each other. For this purpose, one considers the chiral carbon that is furthest removed from the C=O group. Its four bonds must connect to −H, −OH, −C(OH)H, and the rest of the molecule. If the molecule can be rotated in space so that the directions of those four groups match those of the analog groups inD-glyceraldehyde's C2, then the isomer receives the D- prefix. Otherwise, it receives the L- prefix.
In the Fischer projection, the D- and L- prefixes specifies the configuration at the carbon atom that is second from bottom: D- if the hydroxyl is on the right side, and L- if it is on the left side.
Note that the D- and L- prefixes do not indicate the direction of rotation of polarized light, which is a combined effect of the arrangement at all chiral centers. However, the two enantiomers will always rotate the light in opposite directions, by the same amount. See also d/l system.

Cyclic isomers
A monosaccharide often switches from the acyclic (open-chain) form to a cyclic form, through a nucleophilic addition reaction between the carbonyl group and one of the hydroxyls of the same molecule. The reaction creates a ring of carbon atoms closed by one bridgingoxygen atom. The resulting molecule has an hemiacetal or hemiketal group, depending on whether the linear form was an aldose or a ketose. The reaction is easily reversed, yielding the original open-chain form.
In these cyclic forms, the ring usually has 5 or 6 atoms. These forms are called furanoses and pyranoses, respectively — by analogy with furan and pyran, the simplest compounds with the same carbon-oxygen ring (although they lack the double bonds of these two molecules). For example, the aldohexose glucose may form a hemiacetal linkage between the hydroxyl on carbon 1 and the oxygen on carbon 4, yielding a molecule with a 5-membered ring, called glucofuranose. The same reaction can take place between carbons 1 and 5 to form a molecule with a 6-membered ring, called glucopyranose. Cyclic forms with a 7-atom ring (the same of oxepane), rarely encountered, are called heptoses.

Conversion between the furanose, acyclic, and pyranose forms of D-glucose.
Pyranose forms of some pentose sugars.
Pyranose forms of some hexose sugars.
For many monosaccharides (including glucose), the cyclic forms predominate, in the solid state and in solutions, and therefore the same name commonly is used for the open- and closed-chain isomers. Thus, for example, the term "glucose" may signify glucofuranose, glucopyranose, the open-chain form, or a mixture of the three.
Cyclization creates a new stereogenic center at the carbonyl-bearing carbon. The −OH group that replaces the carbonyl's oxygen may end up in two distinct positions relative to the ring's midplane. Thus each open-chain monosaccharide yields two cyclic isomers (anomers), denoted by the prefixes α- and β-. The molecule can change between these two forms by a process called mutarotation, that consists in a reversal of the ring-forming reaction followed by another ring formation.[1]

Haworth projection[edit]
The stereochemical structure of a cyclic monosaccharide can be represented in a Haworth projection. In this diagram, the α-isomer has the -OH of the anomeric carbon below the plane of the carbon atoms, and the β-isomer has the -OH of the anomeric carbon above the plane. Pyranoses typically adopt a chair conformation, similar to that of cyclohexane. In this conformation, the α-isomer has the -OH of the anomeric carbon in an axial position, whereas the β-isomer has the OH- of the anomeric carbon in equatorial position.[2]
·        

α-D-Glucopyranose

·        

β-D-Glucopyranose

PROPERTIES:
Monosaccharides such as glucose and fructose are crystalline solids at room temperature, but they are quite soluble in water, each molecule having several OH groups that readily engage in hydrogen bonding. The chemical behavior of these monosaccharides is likewise determined by their functional groups.

An important reaction of monosaccharides is the oxidation of the aldehyde group, one of the most easily oxidized organic functional groups. Aldehyde oxidation can be accomplished with any mild oxidizing agent, such as Tollens’ reagent or Benedict’s reagent. With the latter, complexed copper(II) ions are reduced to copper(I) ions that form a brick-red precipitate [copper(I) oxide; Figure 16.5.1].
















Any carbohydrate capable of reducing either Tollens’ or Benedict’s reagents without first undergoing hydrolysis is said to be a reducing sugar. Because both the Tollens’ and Benedict’s reagents are basic solutions, ketoses (such as fructose) also give positive tests due to an equilibrium that exists between ketoses and aldoses in a reaction known as tautomerism.
Figure 16.5.1 Benedict’s Test. Benedict’s test was performed on three carbohydrates, depicted from left to right: fructose, glucose, and sucrose. The solution containing sucrose remains blue because sucrose is a nonreducing sugar.


These reactions have been used as simple and rapid diagnostic tests for the presence of glucose in blood or urine. For example, Clinitest tablets, which are used to test for sugar in the urine, contain copper(II) ions and are based on Benedict’s test. A green color indicates very little sugar, whereas a brick-red color indicates sugar in excess of 2 g/100 mL of urine.

DISACCHARIDES:
Two joined monosaccharides are called a disaccharide and these are the simplest polysaccharides. Examples includesucrose and lactose. They are composed of two monosaccharide units bound together by a covalent bond known as aglycosidic linkage formed via a dehydration reaction, resulting in the loss of a hydrogen atom from one monosaccharide and a hydroxyl group from the other. The formula of unmodified disaccharides is C12H22O11. Although there are numerous kinds of disaccharides, a handful of disaccharides are particularly notable.
Sucrose, pictured to the right, is the most abundant disaccharide, and the main form in which carbohydrates are transported in plants. It is composed of one D-glucose molecule and one D-fructose molecule. The systematic name for sucrose, O-α-D-glucopyranosyl-(1→2)-D-fructofuranoside, indicates four things:
·         Its monosaccharides: glucose and fructose
·         Their ring types: glucose is a pyranose and fructose is a furanose
·         How they are linked together: the oxygen on carbon number 1 (C1) of α-D-glucose is linked to the C2 of D-fructose.
·         The -oside suffix indicates that the anomeric carbon of both monosaccharides participates in the glycosidic bond.
Lactose, a disaccharide composed of one D-galactose molecule and one D-glucose molecule, occurs naturally in mammalian milk. The systematic name for lactose is O-β-D-galactopyranosyl-(1→4)-D-glucopyranose. Other notable disaccharides include maltose (two D-glucoses linked α-1,4) and cellulobiose (two D-glucoses linked β-1,4). Disaccharides can be classified into two types: reducing and non-reducing disaccharides. If the functional group is present in bonding with another sugar unit, it is called a reducing disaccharide or biose.

A disaccharide (also called a double sugar or biose[1]) is the sugar formed when two monosaccharides (simple sugars) are joined. Like monosaccharides, disaccharides are soluble in water. Three common examples are sucrose, lactose,[2] and maltose.
Disaccharides are one of the four chemical groupings of carbohydrates (monosaccharides, disaccharides, oligosaccharides, and polysaccharides). The most common types of disaccharides—sucrose, lactose, and maltose—have twelve carbon atoms, with the general formula C12H22O11. The differences in these disaccharides are due to atomic arrangements within the molecule.[3]
The joining of simple sugars into a double sugar happens by a condensation reaction, which involves the elimination of a water molecule from the functional groupsonly. Breaking apart a double sugar into its two simple sugars is accomplished by hydrolysis with the help of a type of enzyme called a disaccharidase. As building the larger sugar ejects a water molecule, breaking it down consumes a water molecule. These reactions are vital in metabolism. Each disaccharide is broken down with the help of a corresponding disaccharidase (sucrase, lactase, and maltase).

Classification[edit]

There are two functionally different classes of disaccharides:
·         Reducing disaccharides, in which one monosaccharide, the reducing sugar of the pair, still has a free hemiacetal unit that can perform as a reducing aldehydegroup; cellobiose and maltose are examples of reducing disaccharides, each with one hemiacetal unit, the other occupied by the glycosidic bond, which prevents it from acting as a reducing agent.
·         Non-reducing disaccharides, in which the component monosaccharides bond through an acetal linkage between their anomeric centers. This results in neither monosaccharide being left with a hemiacetal unit that is free to act as a reducing agent. Sucrose and trehalose are examples of non-reducing disaccharides because their glycosidic bond is between their respective hemiacetal carbon atoms. The reduced chemical reactivity of the non-reducing sugars in comparison to reducing sugars, may be of advantage where stability in storage is important.

Formation[edit]

The formation of a disaccharide molecule from two monosaccharide molecules proceeds by displacing a hydroxyl radical from one molecule and a hydrogen nucleus(a proton) from the other, so that the now vacant bonds on the monosaccharides join the two monomers together. The vacant bonds on the hydroxyl radical and the proton unite in their turn, forming a molecule of water, that then goes free. Because of the removal of the water molecule from the product, the term of convenience for such a process is "dehydration reaction" (also "condensation reaction" or "dehydration synthesis"). For example, milk sugar (lactose) is a disaccharide made by condensation of one molecule of each of the monosaccharides glucose and galactose, whereas the disaccharide sucrose in sugar cane and sugar beet, is a condensation product of glucose and fructose. Maltose, another common disaccharide, is condensed from two glucose molecules.[6]
The dehydration reaction that bonds monosaccharides into disaccharides (and also bonds monosaccharides into more complex polysaccharides) forms what are called glycosidic bonds.[7]

Properties[edit]

The glycosidic bond can be formed between any hydroxyl group on the component monosaccharide. So, even if both component sugars are the same (e.g.,glucose), different bond combinations (regiochemistry) and stereochemistry (alpha- or beta-) result in disaccharides that are diastereoisomers with different chemical and physical properties.
Depending on the monosaccharide constituents, disaccharides are sometimes crystalline, sometimes water-soluble, and sometimes sweet-tasting and sticky-feeling.
Home / Carbohydrates / Disaccharides

Disaccharides

Disaccharides Definition

Disaccharides [Greek di = two; sacchar = sugar] are sugars composed of 2 monosaccharides (Chart 1). Disaccharides, along with monosaccharides, are called simple carbohydrates.

Three Common Disaccharides

The three most common disaccharides in foods are sucrose, lactose and maltose.

A Typical Disaccharide Structure

A disaccharide molecule is formed by 2 monosaccharides, joined by a glycosidic bond (Picture 1). The type of a glycosidic bond can determine the properties of certain disaccharides. For example, sucrose, isomaltulose and trehalulose are all composed of glucose and fructose, which are linked by different types of glycosidic bonds.


Picture 1. A disaccharide sucrose composed of

monosaccharides glucose and fructose


BIOLOGICAL IMPORTANCE
disaccharides are formed of 2 monosaccharide units.so, on hydrolysis they give rise to monosaccharides,which are the actual energy providers. 
egs:lactose-the milk sugar 
matose-the malt sugar 
sucrose-the cane sugar 

the biological importance of carbohydrates in general: 
principal source of energy 
structural components of cells 
stored as glycogen in liver of higher animals (reserve) 
carbohydrates like cellulose are rouhage.

Types

Three disaccharides exist in the human diet. Lactose is naturally found in the milk of mammals and contains glucose and galactose. Sucrose is found in beets and sugar cane. Sucrose, also called table sugar, contains glucose and fructose. Maltose is a disaccharide that contains two molecules of glucose. Maltose forms during the breakdown of certain starches, such as barley, during food manufacturing. Glucose is the simple sugar cell that your body uses for energy. Your body normally converts galactose and fructose, also called fruit sugar, into glucose.

Lactose

Lactose, also called milk sugar, is the nutritional source of energy for infants during nursing. Lactose makes milk tastes sweet and is an ingredient in many processed foods that contain dairy. Manufacturers add whey, a byproduct of dairy production that contains lactose, to certain food products, such as breads, cookies, cakes, doughnuts, breakfast bars and ice cream. Lactose requires you have an enzyme called lactase to digest the disaccharide. Many people are lactose intolerant and do not produce sufficient amounts of lactase to digest lactose, causing such symptoms as nausea, diarrhea, gas, abdominal cramps and bloating. You can take a lactase supplement to help you digest lactose and ameliorate the symptoms.

Sucrose


Sucrose is the disaccharide present most in the human diet. The function of sucrose is to sweeten foods for more taste appeal. Manufacturers add sucrose as a sweetener to candies, ice cream, cookies, cakes, breads, sauces, ketchup and canned goods. An advantage of using sucrose as a sweetener is that it is stable in both liquid and crystallized solid states. 

Manufacturers replaced sucrose as a sweetener in many food and beverage products with high-fructose corn syrup, a sweetener that contains a mixture of glucose and high concentrations of fructose and is less costly than sucrose. However, high-fructose corn syrup increases abdominal fat and weight more than sucrose does, according to research by scientists at Princeton University that was published in "Pharmacology, Biochemistry and Behavior" in November 2010.

Maltose

 Maltose does not have a specific function in the body. Manufacturers convert maltose to a disaccharide sugar alcohol called maltilol for use as a bulk sweetener in powder and syrup and added to many sucrose-free and diabetic foods, including chocolates, chewing gum, bakery goods, candies, ice cream and jam. Your body slowly absorbs only 50 to 60 percent of maltilol, with the remainder excreted or fermented in the large intestine.

POLYSACCHARIDES
 Polysaccharides are polymeric carbohydrate molecules composed of long chains of monosaccharideunits bound together by glycosidic linkages and on hydrolysis give the constituent monosaccharides oroligosaccharides. They range in structure from linear to highly branched. Examples include storage polysaccharides such as starch and glycogen, and structural polysaccharides such as cellulose andchitin.
Polysaccharides are often quite heterogeneous, containing slight modifications of the repeating unit. Depending on the structure, these macromolecules can have distinct properties from their monosaccharide building blocks. They may be amorphous or even insoluble in water.[1][2] When all the monosaccharides in a polysaccharide are the same type, the polysaccharide is called ahomopolysaccharide or homoglycan, but when more than one type of monosaccharide is present they are called heteropolysaccharides or heteroglycans.[3][4]
Natural saccharides are generally of simple carbohydrates called monosaccharides with general formula (CH2O)n where n is three or more. Examples of monosaccharides are glucose, fructose, andglyceraldehyde.[5] Polysaccharides, meanwhile, have a general formula of Cx(H2O)y where x is usually a large number between 200 and 2500. Considering that the repeating units in the polymer backbone are often six-carbon monosaccharides, the general formula can also be represented as (C6H10O5)n where 40≤n≤3000.
Polysaccharides contain more than ten monosaccharide units. Definitions of how large a carbohydrate must be to fall into the categories polysaccharides or oligosaccharides vary according to personal opinion. Polysaccharides are an important class of biological polymers. Their function in living organisms is usually either structure- or storage-related. Starch (a polymer of glucose) is used as a storage polysaccharide in plants, being found in the form of both amylose and the branched amylopectin. In animals, the structurally similar glucose polymer is the more densely branched glycogen, sometimes called 'animal starch'. Glycogen's properties allow it to be metabolized more quickly, which suits the active lives of moving animals.
Cellulose and chitin are examples of structural polysaccharides. Cellulose is used in the cell walls of plants and other organisms, and is said to be the most abundantorganic molecule on Earth.[6] It has many uses such as a significant role in the paper and textile industries, and is used as a feedstock for the production of rayon (via the viscose process), cellulose acetate, celluloid, and nitrocellulose. Chitin has a similar structure, but has nitrogen-containing side branches, increasing its strength. It is found in arthropod exoskeletons and in the cell walls of some fungi. It also has multiple uses, including surgical threads. Polysaccharides also includecallose or laminarin, chrysolaminarin, xylan, arabinoxylan, mannan, fucoidan and galactomannan.

Structure[edit]
Nutrition polysaccharides are common sources of energy. Many organisms can easily break down starches into glucose; however, most organisms cannot metabolize cellulose or other polysaccharides like chitin and arabinoxylans. These carbohydrate types can be metabolized by some bacteria and protists. Ruminants andtermites, for example, use microorganisms to process cellulose.
Even though these complex to carbohydrates are not very digestible, they provide important dietary elements for humans. Called dietary fiber, these carbohydrates enhance digestion among other benefits. The main action of dietary fiber is to change the nature of the contents of the gastrointestinal tract, and to change how other nutrients and chemicals are absorbed.[7][8] Soluble fiber binds to bile acids in the small intestine, making them less likely to enter the body; this in turn lowerscholesterol levels in the blood.[9] Soluble fiber also attenuates the absorption of sugar, reduces sugar response after eating, normalizes blood lipid levels and, once fermented in the colon, produces short-chain fatty acids as byproducts with wide-ranging physiological activities (discussion below). Although insoluble fiber is associated with reduced diabetes risk, the mechanism by which this occurs is unknown.[10]
Not yet formally proposed as an essential macronutrient (as of 2005), dietary fiber is nevertheless regarded as important for the diet, with regulatory authorities in many developed countries recommending increases in fiber intake.[7][8][11][12]

Storage polysaccharides[edit]

Starches[edit]

Starch is glucose polymer in which glucopyranose units are bonded by alpha-linkages. It is made up of a mixture of amylose (15–20%) and amylopectin (80–85%). Amylose consists of a linear chain of several hundred glucose molecules and Amylopectin is a branched molecule made of several thousand glucose units (every chain of 24–30 glucose units is one unit of Amylopectin). Starches are insoluble in water. They can be digested which can break the alpha-linkages (glycosidic bonds). Both humans and animals have amylases, so they can digest starches. Potato, rice, wheat, and maize are major sources of starch in the human diet. The formations of starches are the ways that plants store glucose. .

Glycogen[edit]

Glycogen serves as the secondary long-term energy storage in animal and fungal cells, with the primary energy stores being held in adipose tissue. Glycogen is made primarily by the liver and the muscles, but can also be made by glycogenesis within the brain and stomach.[13]
Glycogen is the analogue of starch, a glucose polymer in plants, and is sometimes referred to as animal starch,[14] having a similar structure to amylopectin but more extensively branched and compact than starch. Glycogen is a polymer of α(1→4) glycosidic bonds linked, with α(1→6)-linked branches. Glycogen is found in the form of granules in the cytosol/cytoplasm in many cell types, and plays an important role in the glucose cycle. Glycogen forms an energy reserve that can be quickly mobilized to meet a sudden need for glucose, but one that is less compact and more immediately available as an energy reserve than triglycerides (lipids).
In the liver hepatocytes, glycogen can compose up to eight percent (100–120 g in an adult) of the fresh weight soon after a meal.[15] Only the glycogen stored in the liver can be made accessible to other organs. In the muscles, glycogen is found in a low concentration of one to two percent of the muscle mass. The amount of glycogen stored in the body—especially within the muscles, liver, and red blood cells[16][17][18]—varies with physical activity, basal metabolic rate, and eating habits such as intermittent fasting. Small amounts of glycogen are found in the kidneys, and even smaller amounts in certain glial cells in the brain and white blood cells. The uterus also stores glycogen during pregnancy, to nourish the embryo.[15]
Glycogen is composed of a branched chain of glucose residues. It is stored in liver and muscles.
·         It is an energy reserve for animals.
·         It is the chief form of carbohydrate stored in animal body.
·         It is insoluble in water. It turns brown-red when mixed with iodine.
·         It also yields glucose on hydrolysis.
·        

Schematic 2-D cross-sectional view of glycogen. A core protein of glycogenin is surrounded by branches of glucose units. The entire globular granule may contain approximately 30,000 glucose units.[19]

·   
     
A view of the atomic structure of a single branched strand ofglucose units in a glycogenmolecule.

Structural polysaccharides[edit]

Arabinoxylans[edit]

Arabinoxylans are found in both the primary and secondary cell walls of plants and are the copolymers of two pentose sugars: arabinose and xylose.

Cellulose

The structural component of plants are formed primarily from cellulose. Wood is largely cellulose and lignin, while paper and cotton are nearly pure cellulose. Cellulose is a polymer made with repeated glucose units bonded together by beta-linkages. Humans and many animals lack an enzyme to break the beta-linkages, so they do not digest cellulose. Certain animals such as termites can digest cellulose, because bacteria possessing the enzyme are present in their gut. Cellulose is insoluble in water. It does not change color when mixed with iodine. On hydrolysis, it yields glucose. It is the most abundant carbohydrate in nature.

Chitin

Chitin is one of many naturally occurring polymers. It forms a structural component of many animals, such as exoskeletons. Over time it is bio-degradable in the natural environment. Its breakdown may be catalyzed by enzymes called chitinases, secreted by microorganisms such as bacteria and fungi, and produced by some plants. Some of these microorganisms have receptors to simple sugars from the decomposition of chitin. If chitin is detected, they then produce enzymes to digest it by cleaving the glycosidic bonds in order to convert it to simple sugars and ammonia.
Chemically, chitin is closely related to chitosan (a more water-soluble derivative of chitin). It is also closely related to cellulose in that it is a long unbranched chain ofglucose derivatives. Both materials contribute structure and strength, protecting the organism.

Pectins

Pectins are a family of complex polysaccharides that contain 1,4-linked α-D-galactosyluronic acid residues. They are present in most primary cell walls and in the non-woody parts of terrestrial plants.

Acidic polysaccharides

Acidic polysaccharides are polysaccharides that contain carboxyl groups, phosphate groups and/or sulfuric ester groups.

Bacterial capsular polysaccharides

Pathogenic bacteria commonly produce a thick, mucous-like, layer of polysaccharide. This "capsule" cloaks antigenic proteins on the bacterial surface that would otherwise provoke an immune response and thereby lead to the destruction of the bacteria. Capsular polysaccharides are water-soluble, commonly acidic, and havemolecular weights on the order of 100-2000 kDa. They are linear and consist of regularly repeating subunits of one to six monosaccharides. There is enormous structural diversity; nearly two hundred different polysaccharides are produced by E. coli alone. Mixtures of capsular polysaccharides, either conjugated or native are used as vaccines.
Bacteria and many other microbes, including fungi and algae, often secrete polysaccharides to help them adhere to surfaces and to prevent them from drying out. Humans have developed some of these polysaccharides into useful products, including xanthan gum, dextran, welan gum, gellan gum, diutan gum and pullulan.
Most of these polysaccharides exhibit useful visco-elastic properties when dissolved in water at very low levels.[20] This makes various liquids used in everyday life, such as some foods, lotions, cleaners, and paints, viscous when stationary, but much more free-flowing when even slight shear is applied by stirring or shaking, pouring, wiping, or brushing. This property is named pseudoplasticity or shear thinning; the study of such matters is called rheology.
Aqueous solutions of the polysaccharide alone have a curious behavior when stirred: after stirring ceases, the solution initially continues to swirl due to momentum, then slows to a standstill due to viscosity and reverses direction briefly before stopping. This recoil is due to the elastic effect of the polysaccharide chains, previously stretched in solution, returning to their relaxed state.
Cell-surface polysaccharides play diverse roles in bacterial ecology and physiology. They serve as a barrier between the cell wall and the environment, mediate host-pathogen interactions, and form structural components of biofilms. These polysaccharides are synthesized from nucleotide-activated precursors (callednucleotide sugars) and, in most cases, all the enzymes necessary for biosynthesis, assembly and transport of the completed polymer are encoded by genes organized in dedicated clusters within the genome of the organism. Lipopolysaccharide is one of the most important cell-surface polysaccharides, as it plays a key structural role in outer membrane integrity, as well as being an important mediator of host-pathogen interactions.
The enzymes that make the A-band (homopolymeric) and B-band (heteropolymeric) O-antigens have been identified and the metabolic pathways defined.[21] The exopolysaccharide alginate is a linear copolymer of β-1,4-linked D-mannuronic acid and L-guluronic acid residues, and is responsible for the mucoid phenotype of late-stage cystic fibrosis disease. The pel and psl loci are two recently discovered gene clusters that also encode exopolysaccharides found to be important for biofilm formation. Rhamnolipid is a biosurfactant whose production is tightly regulated at the transcriptional level, but the precise role that it plays in disease is not well understood at present. Protein glycosylation, particularly of pilin and flagellin, became a focus of research by several groups from about 2007, and has been shown to be important for adhesion and invasion during bacterial infection.[22]

Chemical identification tests for polysaccharides

Periodic acid-Schiff stain (PAS)

 

Polysaccharides with unprotected vicinal diols or amino sugars (i.e. some OH groups replaced with amine) give a positive Periodic acid-Schiff stain (PAS). The list of polysaccharides that stain with PAS is long. Although mucins of epithelial origins stain with PAS, mucins of connective tissue origin have so many acidic substitutions that they do not have enough glycol or amino-alcohol groups left to react with PAS.


Comments

Popular posts from this blog

Neisseria species